Strong Consistency of Least Squares Estimates in Dynamic Models
نویسندگان
چکیده
منابع مشابه
Strong consistency of least-squares estimates in regression models.
A general theorem on the limiting behavior of certain weighted sums of i.i.d. random variables is obtained. This theorem is then applied to prove the strong consistency of least-squares estimates in linear and nonlinear regression models with i.i.d. errors under minimal assumptions on the design and weak moment conditions on the errors.
متن کاملOn strong consistency of least squares identification algorithms
In this paper almost sure convergence results are derived for least squares identification algorithms. The convergence conditions expressed in terms of the measurable signal model states derived for asymptotically stable signal models and possibly nonstationary processes are in essence the same as those pre~iously given. but are derived more directly, Strong consistency results are derived for ...
متن کاملReversals of Least-Squares Estimates
An adjusted estimate may be opposite the original estimate. This paper presents necessary and sufficient conditions for such a reversal, in the context of linear modeling, where adjustment is obtained through considering additional explanatory data associated with lurking variables.
متن کاملApplication of Recursive Least Squares to Efficient Blunder Detection in Linear Models
In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...
متن کاملDiscontinuous parameter estimates with least squares estimators
We discuss weighted least squares estimates of ill-conditioned linear inverse problems where weights are chosen to be inverse error covariance matrices. Least squares estimators are the maximum likelihood estimate for normally distributed data and parameters, but here we do not assume particular probability distributions. Weights for the estimator are found by ensuring its minimum follows a χ d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1979
ISSN: 0090-5364
DOI: 10.1214/aos/1176344670